
Analog Computer Applications

Solving PDEs on an analog computer

This application note shows a simple and straightforward way to solve
partial di↵erential equations (PDE s for short) on an analog/hybrid com-
puter. It also shows how to use the Analog Paradigm hybrid controller
to control the analog computer, gather data and generate a plot of the
results.

The following is based on the one-dimensional wave equation as an
example:

1

c

ü� @

2
u

@x

2 = 0

Since an analog computer only has time as a free variable, a straightfor-
ward way to machinize a problem like this is to approximate the di↵er-
ential quotient @

2
u

@x

2 as a quotient of di↵erences thus discretizing space
yielding

1

c

ü� u

i�1 � 2u
i

+ u

i+1

(�x)2
= 0

with �x = x

n

and n 2 N. Defining

� :=
c

(�x)2
=

cn

2

x

2

results in a form suitable to derive an analog computer setup:

ü

i

= �

u

i�1 � 2u
i

+ u

i+1

(�x)2
.

Dr. Bernd Ulmann, Issue #23, 27-JAN-2020

Analog Computer Applications

Setting n := 4 and � := 1 to simplify things further yields

u0 = �(t)

ü1 = u0 � 2u1 + u2

ü2 = u1 � 2u2 + u3

ü3 = u2 � 2u3 + u4

ü4 = u3 � 2u4 + u5

u5 = 0

with �(t) being an impulse occurring at t = 0.
These four coupled ordinary di↵erential equations (ODE s for short)

can now be transformed into an analog computer program by integrating
twice over each second derivative ü

i

, yielding the corresponding u

i

term.
The overall setup is shown in figure 1. The input pulse is applied as an
initial condition to the first integrator.

Using a four-channel oscilloscope the problem variables u1, . . . , u4

could be displayed easily, running the analog computer in repetitive mode
with a high time scale factor set on the integrators. In the following,
the Analog Paradigm hybrid controller (HC) was used to control the
analog computer from an attached digital computer. The HC module
can also act as a data logger, a feature used to generate the graph of
the resulting functions.

The hybrid controller is programmed using a Perl-module IO::HyCon1.
This expects the analog computer setup to be described in a configura-
tion YAML-file as shown below:

1

See https://metacpan.org/pod/IO::HyCon.

Dr. Bernd Ulmann, Issue #23, 27-JAN-2020

Analog Computer Applications

u0

u5

u1

u2

u3

u4

0.2

0.2

0.2

0.2

10

10

10

10

Figure 1: Computer program for solving the one-dimensional wave equation

Dr. Bernd Ulmann, Issue #23, 27-JAN-2020

Analog Computer Applications

wave equation.yml

1 serial:
2 port: /dev/cu.usbserial-DN050L21
3 bits: 8
4 baud: 115200
5 parity: none
6 stopbits: 1
7 poll_interval: 10
8 poll_attempts: 20000
9 types:

10 0: PS
11 1: SUM8
12 2: INT4
13 3: PT8
14 4: CU
15 5: MLT8
16 6: MDS2
17 7: CMP4
18 8: HC
19 elements:
20 U1: 0260
21 U2: 0261
22 U3: 0262
23 U4: 0263
24 problem:
25 times:
26 ic: 10
27 op: 200
28 ro-group:
29 - U1
30 - U2
31 - U3
32 - U4

wave equation.yml

Dr. Bernd Ulmann, Issue #23, 27-JAN-2020

Analog Computer Applications

This configuration file consists of the following sections:

serial: This section contains the settings required for the USB-based
serial communication interface. Typically, only the port has to be
changed when using a di↵erent computer setup. All other parame-
ters are at their default values.

types: Here all known computing elements are defined with their re-
spective ids.

elements: This section contains a list of all computing elements with
their respective hexadecimal addresses. These elements can be used
as parts of a read-out group (see below).

problem: This section contains several subsections of which only two are
used in this example: The times-subsection contains the settings
for the duration of the IC- and OP-phase of a simulation run. The
subsection labelled ro-group consists of a list of all computing
elements which should be read out continuously during a run. In
this case these are the four integrators labelled U1,. . . ,U4 from the
elements section above.

The corresponding Perl program using this configuration file2 is shown
in the following listing:

wave equation.pl

1 use strict;
2 use strict;
3 use warnings;
4 use IO::HyCon; # Load the hybrid controller Perl module.
5

2

It should be noted that the name of the Perl program and the configuration file have to be identical, the only

di↵erence being the file extensions which are .pl and .yml respectively.

Dr. Bernd Ulmann, Issue #23, 27-JAN-2020

Analog Computer Applications

6 my $ac = IO::HyCon->new(); # Create a new hybrid controller object.
7 $ac->setup(); # Setup the analog computer as described in the
8 # configuration file.
9 $ac->single_run_sync(); # Start a single run.

10 $ac->get_data(); # Get the data gathered by the hybrid controller
11 $ac->plot(); # and generate a plot.

wave equation.pl

First, the Perl module IO::HyCon is loaded, and an analog computer
control object $ac is instantiated (as a singleton). Calling the method
$ac->setup() automatically configures the hybrid controller and the
analog computer. In this case only the IC- and OP-times as well as the
readout group consisting of the four integrators U1,. . . ,U4 are set.

Calling $ac->single run sync() initiates a single run of the analog
computer in synchronous mode, i. e. the program waits until the IC- and
OP-phases have been completed. The method call $ac->get data()

reads the data gathered by the hybrid computer during the OP-phase
and stores it in an internal data structure of the $ac-object.

A plot of the four functions u1, . . . , u4 can then be generated by calling
$ac->plot(). The result of a typical computer run with u0 = +1 is
shown in figure 2.

Calling $ac->plot(type => ’3d’) generates a 3d(-ish) plot as shown
in figure 3.

Dr. Bernd Ulmann, Issue #23, 27-JAN-2020

Analog Computer Applications

Figure 2: Solution of the one-dimensional wave equation with the range x divided into four sections

of equal width

Figure 3: Solution of the one-dimensional wave equation with the range x divided into four sections

of equal width plotted with type => ’3d’

Dr. Bernd Ulmann, Issue #23, 27-JAN-2020

