Solving Legendre's differential equation

Legendre's ${ }^{1}$ differential equation has the form

$$
\begin{equation*}
\left(1-t^{2}\right) \ddot{y}-2 t \dot{y}+n(n+1) y=0 \tag{1}
\end{equation*}
$$

with the general solution

$$
\begin{equation*}
y=\alpha P_{n}(t)+\beta Q_{n}(t), \tag{2}
\end{equation*}
$$

where $P_{n}(t)$ and $Q_{n}(t)$ are linearly independent and are called Legendre functions of the 1st- and 2nd-kind. $P_{n}(t)$ are polynomials which is what we are interested in.

Due to the factor $1-t^{2}$ this equation can not be directly transformed into an analog computer setup as this would require a division, the denominator of which tends to 0 . Instead equation (1) is rewritten as

$$
\ddot{y}-t^{2} \ddot{y}-2 t \dot{y}+n(n+1) y=0
$$

which is then solved for \ddot{y}, yielding

$$
\begin{equation*}
\ddot{y}=t^{2} \ddot{y}+2 t \dot{y}-n(n+1) y . \tag{3}
\end{equation*}
$$

This is insofar unusual as \ddot{y} is not separated on the left side but also occurs on the right. In addition to that the terms $t^{2} \ddot{y}$ and $2 t \dot{y}$ would require three multipliers if implemented in a naive way. One multiplier can be saved by rewriting equation (3):

$$
\ddot{y}=t(t \ddot{y}+2 \dot{y})-n(n+1) y .
$$

To simplify notation, $n^{+}=n(n+1)$ is introduced, finally yielding

$$
\ddot{y}=t(t \ddot{y}+2 \dot{y})-n^{*} y .
$$

To select the desired solution $P_{n}(t)$ for this DEQ suitable initial conditions are required. Table 1 lists the $P_{n}(t)$ for $1 \leq n \leq 5$ with the resulting initial conditions for $\dot{y}(0)$ and $y(0)$. Obviously the problem must be scaled at least with respect to \dot{y} as the

Analog Computer Applications

n	$P_{n}(t)$	$y(0)$	$\dot{y}(0)$
1	t	0	1
2	$\frac{3}{2} x^{2}-\frac{1}{2}$	$-\frac{1}{2}$	0
3	$\frac{5}{2} x^{3}-\frac{3}{2} x$	0	$-\frac{3}{2}$
4	$\frac{35}{8} x^{4}-\frac{15}{4} x^{3}+\frac{3}{8}$	$\frac{3}{8}$	0
5	$\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$	0	$\frac{15}{8}$

Table 1: The first five $P_{n}(t)$ solving LEGENDRE's DEQ with the resulting initial conditions
initial conditions nearly reach 2 for $n=5$, thus giving rise to a scaling factor of $\frac{1}{2}$ for \dot{y}.
n^{*} must also be scaled - assuming a maximum value of $n=5$ requires an additional scaling factor of $\frac{1}{n(n+1)}=\frac{1}{30}$. Some experimentation shows that \ddot{y} quickly approaches 20 for $n=5$ and $t \longrightarrow 1$. Taking all these scaling factors into account yields the program shown in figure $1,{ }^{2}$ the implementation of which on THE ANALOG THING is shown in figure 2.

To generate $P_{5}(t)$ with this setup, the initial conditions as well as n^{*} must be set according to table 1 . It is $y(0)=0$ and $\dot{y}(0)=\frac{15}{8}$. With an overall scaling factor of $\frac{1}{2 \dot{2} 0}$ the initial value must be set to $\widehat{\dot{y}(0)}=\frac{15}{8 \cdot 2 \cdot 20} \approx 0.047$. $n=5$ yields $n^{*}=30$ so that the potentiometer following the integrator yielding y must be set to 0.05 . The operation time is set to $\frac{1}{10} \mathrm{~s}$ with the time scale factors shown.

Figure 3 shows function $y(t)=P_{5}(t)$ resulting from these values. ${ }^{3}$ Experimenting with different initial conditions for $\dot{y}(0)$ and $y(0)$ yields results of the general form of equation 2.

[^0]
Analog Computer Applications

Figure 1: Analog computer program for solving the LEGENDRE DEQ

Figure 2: Actual setup of the problem on THE ANALOG THING

Analog Computer Applications

Figure 3: $P_{5}(t)$ with $0 \leq t \leq 1$

[^0]: ${ }^{1}$ Adrien-Marie Legendre, 18.09.1752-09.01.1833
 ${ }^{2}$ The hat over the initial conditions denotes their scaled values.
 ${ }^{3}$ This is an x, y-plot with $x=t$ showing the flyback when THE ANALOG THING switched from OP to IC mode.

