

Analog Computer Applications

A chaotic Sprott system

A dark and rainy Sunday – what could be better than staying at home where it is warm and cosy and playing with an analog computer like THE ANALOG THING. This application shows the implementation of a simple chaotic Sprott system¹:

$$\dot{x} = yz$$

 $\dot{y} = x - y$
 $\dot{z} = 1 - xy$

This system is easy to scale, as all variables are well within the interval $\left[-10,10\right]$ yielding the scaled system

$$\dot{x} = 10yz$$
$$\dot{y} = x - y$$
$$\dot{z} = \frac{1}{10} - 10xy$$

which can be implemented directly as shown in figure 1.

References

[GUILLÉN-FERNÁNDEZ et al. 2019] OMAR GUILLÉN-FERNÁNDEZ, ASHLEY MELÉNDEZ-CANO, ESTEBAN TLELO-CUAUTLE, JOSE CRUZ NÚÑEZ-PÉREZ, JOSE DE JESUS RANGEL-MAGDALENO, "On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission", in *PLOS ONE*, February 6, 2019, https://doi.org/10.1371/journal.pone.0209618

Dr. BERND ULMANN, Issue #43, 29-OCT-2023

 $^{^1}See$ [Guillén-Fernández et al. 2019], case B in table 1.

Analog Computer Applications

Figure 1: Analog computer setup for the chaotic SPROTT system

Figure 2: xz phase space plot of the chaotic ${\rm SPROTT}$ system

Dr. BERND ULMANN, Issue #43, 29-OCT-2023

Analog Computer Applications

Figure 3: Setup of THE ANALOG THING for the chaotic SPROTT system

Dr. BERND ULMANN, Issue #43, 29-OCT-2023